
  

         

    

  

     

     

 

  

  

  

    

  

   

  

    

1 Two-decades of GPM IMERG Early and Final Run Products 

2 Intercomparison: Similarity and Difference in Climatology, Rates, and 

3 Extremes 

4 Zhi Li1, Guoqiang Tang2,3, Zhen Hong1, Mengye Chen1, Shang Gao1, Pierre Kirstetter1, 

5 Jonathan J. Gourley4, Yixin Wen4,5, Teshome Yami1, Soumaya Nabih6, Yang Hong1* 

6 1 Hydrometeorology and Remote Sensing Laboratory, School of Civil Engineering and 

7 Environmental Science, University of Oklahoma, Norman, OK 73072, USA 

8 2 University of Saskatchewan Coldwater Lab, Canmore, Alberta T1W 3G1, Canada 

9 3 Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada 

10 4 NOAA National Severe Storms Laboratory, Norman, OK 73072, USA 

11 5 Cooperative Institute for Mesoscale Meteorological Studies, Norman, ok 73072, USA 

12 6 Department of Environment, Laboratory of Functional Ecology and Environment 

13 Engineering, Sidi Mohamed Ben Abdellah University, Fez 32000, Morocco 

14 *Corresponding author: yanghong@ou.edu 

1 

mailto:yanghong@ou.edu


  

  

   

   

   

  

     

     

    

   

16

17

18

19

20

21

22

23

15 Highlights: 

• Twenty-year retrospective comprehensive cross-investigation of GPM IMERG Early Run 

product and Final Run product in terms of average, instantaneous rate, and extremes 

• Climatology: Early Run estimated annual rainfall is systematically higher than Final Run 

worldwide 

• Instantaneous Rates: Early Run and Final Run are closer in Europe and cold regions, 

while large differences are reported in Africa and (semi) arid regions 

• Extreme: Early Run measures 33.0% higher extreme rainfall rates (at 99th percentile) than 

Final Run 
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24 Abstract 

25 Precipitation is an essential climate and forcing variable for modeling the global water 

26 cycle. Particularly, the recent Integrated Multi-satellite Retrievals for GPM (IMERG) product 

27 retrospectively provides an unprecedented two decades of high-resolution satellite 

28 precipitation estimates. The primary goal of this study is to examine the similarities and 

29 differences between the two latest and also arguably the most popular, GPM IMERG Early 

30 and Final Run (ER and FR) products across the globe. The results reveal that: (1) ER 

31 systematically estimates 12.0% higher annual rainfall than FR, particularly over land 

32 (16.7%); (2) ER and FR show significant differences in instantaneous rates (Root Mean 

33 Squared Difference: RMSD=2.38 mm h-1 and normalized RMSD: RMSD_norm=1.09), 

34 especially in Africa (RMSD=2.40 mm h-1) and hot, arid regions (RMSD_norm=1.11), but 

35 less so in Europe (RMSD=2.16 mm h-1) and cold areas (RMSD_norm=0.87); and (3) ER 

36 measures 33.0% higher extreme rainfall rates than FR over the globe. The exploration of their 

37 similarities and differences provides a first-order global assessment of various hydrological 

38 utilities: FR is designed to be more suitable for retrospective hydroclimatology and water 

39 resource applications, while the earliest available ER product, though not bias-corrected by 

40 rain gauges, still shows potential utility for operational modeling of rainfall-triggered 

41 hazards. The findings of this study can provide an assessment to product developers and 

42 broader data users and practitioners to address the inherent issues in hardware limitations, 

43 retrieval algorithms, and uncertainty quantification for research and applications. 

44 Keywords: Climatology; Extremes; Early run; Final run; GPM IMERG; Satellite 
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45 1 Introduction 

Satellite Precipitation Products (SPPs) are vital for providing global observations 

(Levizzani et al., 2020a,b), developing precipitation climatologies (Huffman et al., 2007; 

Sharifi et al., 2016; Tang et al., 2020; Yin et al., 2004), and hydrometeorological applications 

(Chen et al., 2020; Hong et al., 2004; Li et al., 2020a; Sorooshian et al., 2000; Tang et al., 

2016a; Wang et al., 2017). Over the last two decades, the National Aeronautics and Space 

Administration (NASA) initiated two commissions in cooperation with the Japanese 

Aerospace Exploration Agency (JAXA) and many international agencies and universities. In 

1997, the Tropical Rainfall Measuring Mission (TRMM) was launched with the precipitation 

radar (PR) and microwave imager (TMI) to enhance tropical precipitation measurement 

capabilities (Kummerow et al., 2000; Huffman et al., 2007). As TRMM was decommissioned 

in 2015, its successor, the Global Precipitation Measurement (GPM) Core Observatory (GPM 

CO), started operations to expand precipitation estimation over high latitudes (i.e., 65°N-S). 

With advances in the Dual-frequency Precipitation Radar (DPR) and the GPM Microwave 

Imager (GMI), GPM CO is capable of detecting light rain and falling snow from the 

mesoscale up to planetary-scale circulations (Hou et al., 2014; Skofronick-Jackson et al., 

2017). To date, a number of quasi-global SPPs have been made available for open access to 

the public, e.g., TRMM Multi-satellite Precipitation Analysis (TMPA; Huffman et al., 2007), 

Climate prediction center MORPHing method (CMORPH; Joyce et al., 2004; Joyce & Xie, 

2011), Precipitation Estimation from Remotely Sensed Information using Artificial Neural 

Networks family (PERSIANN family; Hong et al., 2004; Nguyen et al., 2018; Sorooshian et 

al., 2000), Global Satellite Mapping of Precipitation (GSMaP; Kubota et al., 2007), and the 

latest NASA Integrated Multisatellite Retrievals for GPM (IMERG; Huffman et al., 2019a). 

In a nutshell, the IMERG algorithm is designed to intercalibrate, merge, and interpolate “all” 

satellite microwave precipitation estimates, together with microwave-calibrated infrared (IR) 

4 
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satellite estimates, precipitation gauge analyses, and potentially other precipitation estimators 

at fine time and space scales over the entire globe. 

In order to accommodate various requirements for latency and accuracy, three products 

are systematically generated (Tan et al., 2019a). The first two are Near-Real-Time (NRT) 

products denoted as IMERG Early Run (ER; ~4 hours latency) and Late Run (LR; ~14 hours 

latency); with more data available given the latency period, the final post-real-time (PRT) run 

uses monthly gauge data to create a research-quality Final Run product (FR; ~3.5 months 

latency). The algorithm-based differences between the three-staged products are summarized 

in Tan et al. (2019b). Despite IMERG being a state-of-the-art SPP, numerous users (e.g., 

research communities and operational agencies) oftentimes face many unanswered questions 

and lack clear guidance. 

To the best of our knowledge, previous works of comparing the IMERG three-stage 

products are either temporally short or localized. O et al. (2017) evaluated the performance of 

the three products, referenced to two dense gauge networks in southeastern Austria, and 

found the accuracy is ranked as follows: FR>LR>ER. Wang et al. (2017) compared the three 

datasets with a hydrologic evaluation in a small Beijing River Basin in China, and they 

demonstrated that FR exhibits the best overall statistical performance with respect to ground 

rain gauges and streamflow gauges. Omranian & Sharif (2018b) similarly found that FR has 

better performance than ER and LR in the lower Colorado River Basin. Mahmoud et al. 

(2018) performed station-based event evaluation for the three products in Saudi Arabia and 

highlighted that FR performs best. In summary, FR generally outperforms ER and LR in 

terms of accuracy based on local case studies, mainly due to rain gauge adjustments. 

However, a comprehensive examination of the differences between ER and FR is still lacking 

from the perspectives of hydroclimatology, hydrometeorology, and hydrological extremes, 

especially in its full lifespan of data availability on a global basis. The overarching goal of 
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this study is to systematically investigate the similarity and difference between the GPM  

IMERG Early and Final Run products over the globe for the last two decades. Their       

similarities and differences are revealed from three aspects: (1) precipitation climatology, (2) 

instantaneous precipitation rates, and (3) extreme precipitation events, which  hopefully can 

provide valuable information for applications in the fields  of hydroclimatology, 

hydrometeorology, and disaster monitoring and early warning. This study’s findings and  

feedbacks will further motivate product developers to implement   algorithmic corrections to   

address the inherent problems of IMERG Early Run, in order to maximize its joint  

advantages in both latency and accuracy. This paper     is organized as follows: Section 2   

introduces the   statistics  and datasets. Section 3 unveils the results at four levels. Section 4      

discusses the limitations of this study. Section 5 concludes this study and provides some       

recommendations.   

2  Material  and  methods  

2.1  Study area  

Precipitation is non-uniformly distributed over the globe, as over 95%   is accounted for  

in  the intertropical convergence zone (ITCZ), South Pacific convergence zone (SPCZ), and  

summer monsoon regions (Lau & Wu, 2011; Ricko et al., 2016). Different from previous      

versions, the IMERG V06 generates global precipitation (i.e., 90°N-  S)  at  0.1o  spatial  

resolution at a half-hourly time interval. In the following sections, study areas include the        

globe as a whole and are further broken down into land vs. ocean surface. Over land, the          

areas are studied from the perspective of continents, elevations, and climate zones. It is worth     

noting that the characteristics of rainfall over land are more diverse than the ocean as land        

surfaces have more complicated terrain and influences on the generation of precipitation        

(Kim et al., 2017; Sharifi et al., 2016).     
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2.2  Dataset  

2.2.1  IMERG  

In this study, the latest IMERG Version 06B  ER  and FR  are used for global  

precipitation assessment  

(https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHH_06/summary?keywords=IMERG).  

ER is   designed for warnings of natural hazards, including flash floods (Huang et al., 2019     ; 

Wang et al., 2017) and landslides (Hong et al., 2007a   ; Kirschbaum & Stanley, 2018). FR  has  

been evaluated extensively for extreme weather conditions  (Huang et al., 2019; Mazzoglio et  

al., 2019; Omranian et al., 2018a), production of climatologies  (Sharifi et al., 2016; Tan et al., 

2019a), and applications over complex terrain (Kim et al., 2017; Li et al., 2020b). LR is not    

considered in this analysis because it improves marginally over ER (Mazzoglio et al., 2019).   

The full-lifespan of data availability for ER and FR is depicted in  Figure 1a and b, in which   

nearly 100% of data are available within 60°N-S. Outside of  it, only partial data can be  

utilized due to the infrequent sampling and lack of IR measurements, and also the snowy/icy   

regions are completely masked out as described in the technical d ocumentation (Huffman et   

al., 2019b; Tan et al., 2019b). A minimum of 40% of the total data length is set as a threshold      

to filter out regions mostly outside 60°N-S and to maintain consistent statistical significance     

of the results.  

2.2.2  Earth surface data  

In this study, Earth’s surface is categorized as land, ocean, and coast to interpret the   

different signals from spaceborne measurements. Coastal regions are collected from Natural    

Earth Data (https://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-

coastline). The ocean coastline, which includes major islands resolved from a 10-meter     

resolution digital elevation model (DEM), is utilized to analyze IMERG measurements.     

7 

https://www.naturalearthdata.com/downloads/10m-physical-vectors/10m
https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHH_06/summary?keywords=IMERG


  

      

  

 

   

   

    

     

    

      

    

  

        

    

   

     

    

     

     

       

    

            

       

       

     

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

The DEM data to segregate the Earth surface regions are based on the NASA Earth 

observations (https://neo.sci.gsfc.nasa.gov/view.php?datasetId=SRTM_RAMP2_TOPO). 

This dataset is made from three sources: NASA’s Space Shuttle, Canada’s radarsat satellite, 

and topographic maps made by the U.S. Geological Survey. It comes with the same spatial 

resolution as IMERG data, namely 0.1°. 

As a part of this study is to investigate the impact of climatologies on the differences 

between ER and FR, the modern climate Köppen-Geiger classification is adopted from 

(http://koeppen-geiger.vu-wien.ac.at/; Kottek et al., 2006), which has also been verified by 

the Global Prediction Climatology Center (GPCC) and applied to evaluate global climates 

and regionalization (Santini & di Paola, 2015; Yang et al., 2019). This classification is based 

on five main climate categories: equatorial, arid, warm temperate, snow, and polar. 

Furthermore, the sub-categories are based on atmospheric conditions according to the 

regional humidity and temperatures. 

2.2.3 Auxiliary datasets 

The GPCC product, used by IMERG FR to perform monthly gauge corrections at 1° 

spatial resolution, is retrieved from 

https://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html. The GPCC product provides the 

number of gauges inside each pixel at spatial resolutions of 0.5°, 1°, and 2.5°. In this study, 

the 0.5° one is selected as it is the closest to the spatial resolution of IMERG (i.e., 0.1°). 

2.3 Computational Methods 

Table 1 lists seven statistical metrics in which ER is considered as the estimate and FR 

as the reference. The first category consists of binary counts (i.e., POD, FAR, and CSI), 

aiming to examine rainfall detectability. The minimum rainfall rate is defined as 0.1 mm h-1 

to avoid large uncertainties in light precipitation (Li et al., 2020; Tapiador et al., 2020). The 
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167 second category evaluates the continuous differences, including the Relative Bias (RB),  

Mean Absolute Difference (MAD), Root Mean Squared Difference (RMSD), and the  

normalized RMSD (RMSD_norm). It should be noted that the evaluation shows the relative   

difference between ER and FR instead of the actual accuracy of ER because FR also contains   

uncertainties.  

3  Results  

3.1  Global Analysis  

3.1.1  Rainy probabilities   

Figure 1c and d illustrate the probability of rain for FR and the ER-FR difference,     

calculated from the 20-year datasets    at 0.1o  spatial resolution and half-hourly  time  scale. 

Globally, ER displays 5.84% of rainy probability on average, which is only 0.47% lower than   

FR (6.37%). However, 91.7% of the surface of the globe shows negative differences,    

meaning that ER detects   less  rainfall with respect to FR over a majority of the globe. The      

maximum rainy probabilit ies  for both  ER  (35.8%) and FR (41.7%) occur in the ITCZ while      

the minima (nearly zero) are located in polar regions.      

3.1.2  Global Annual Rainfall Average     

The 20-year  mean  annual rainfall is shown in Figure 1 with    FR  (e) and  ER-FR (f). The  

global annual rainfall average for ER (1201.8   mm  year-1) is 5.3% higher than FR (1141.6 mm  

year-1), yet the maximum annual rainfall (8867.3     mm  year-1) of ER is 2.8% lower (9118.9    

mm  year-1). Likewise, the maxima are located inside the ITCZ, which is comparable with the       

results revealed by Wang et al. (2018).    

Over oceans, Figure 1e features the ITCZ that stretches    across the Indian Ocean and the    

Pacific Ocean in the tropics. The tropical rainfall band across North America and Asian   

continents is obvious, associated with maxima in annual rainfall. In addition, another    
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precipitation band extends from the subtropics to North America, denoted     as  mid-latitude  

storm tracks, which supplies   a substantial amount of rainfall to high er  latitudes. Some coastal  

regions with a significant amount of rainfall are  also  noticeable in tropical South America,  

Middle Africa, and South Asian islands. Over land, some striking features with remarkable  

rainfall amounts are observed in the equatorial African, South American, and Asian 

continental regions.    

With a focus on the differences between ER and FR, the mean annual difference is  

about 60.1 mm  year-1, and 76.0% of the grid     cells  display positive differences globally.   

Specifically, most of the positive differences are situated     in  the copious rainfall regions in   

middle and low latitudes; however, negative differences tend to be prevalent in the high-  

latitude oceans and over complex terrain. The maximum annual difference of 3642.0  mm  

year-1  is found at Sarygamysh Lake (57.45°E, 41.85°N)  in Uzbekistan (in the upper right  

subplot). There   ER  (FR) estimates  the annual rainfall of 5310.9 (1668.9)  mm  year-1, yet this    

region should not have such heavy rainfall (even 1668.9 mm  year-1) according to the regional  

climatology (https://www.climatestotravel.com/climate/turkmenistan). It could be ascribed to  

the GPROF algorithm that misrepresents the emissivity and temperature of water bodies   on  

land, which in turn results in systematical overestimation (Tian and P eters-Lidard, 2007). It is   

worth noting that the gauge correction in Final markedly reduces systematic error, ensuring 

its appropriateness for water resources management applications.    

3.1.3  Statistical analysis of two decades of hourly rainfall rates    

Figure 2 provides global maps of the statistical metrics        described in Table 1. The first  

three subplots (i.e., a, b, and c) show the global distribution of categorical indices (i.e., POD,    

FAR, CSI) for precipitation detection with respect to FR . Overall, ER is comparable with FR  

in rainfall detection (the mean POD=0.78, FAR=0.24, and CSI=0.63), especially in wet  

places (>1500  mm  year-1); however, ER deviates from FR markedly in dry places (<500     mm  

10 

https://CSI=0.63
https://FAR=0.24
https://POD=0.78
https://www.climatestotravel.com/climate/turkmenistan


  

      

    

     

       

    

  

      

  

      

      

     

   

       

   

    

      

       

 

  

      

    

   

          

        

        

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

year-1, e.g., cold oceanic regions, Sahara desert in North Africa, Tibetan Plateau, Middle East, 

and US Rocky Mountains), where POD is below 0.6 and FAR is above 0.5. Previous studies 

(e.g., Mahmoud et al., 2018) also showed relatively poor detection (below 0.6) of ER against 

ground observations in the Middle East. In these regions, ER possibly suffers from fractional 

coverage issues due to the lower availability of PMW estimates and their associated use in 

backward morphing. According to the morphing techniques described by Joyce et al. (2004), 

it is also likely that ER misses rainfall events, as it measures zero rainfall rate at the 

beginning (t=0 h), and then no rainfall value is propagated to the next half hour (t=0.5h) if 

only using forward morphing. However, it is possible that the subsequent overpass (t>0.5h) 

measures a nonzero value, and then the backward morphing will make up the value at t=0.5h. 

On the other hand, the estimated grid cell is unlikely to be reset to zero if the origin already 

has an initial rainfall value. Therefore, the morphing difference, forward morphing in ER 

compared to two-way morphing in FR, likely leads to more misses, which is reflected in the 

POD statistic. 

For precipitation quantification with respect to FR, the overall RB (0.12) is significant 

on average over the globe, and ER measures slightly higher rainfall over 71.9% of the earth’s 

surface (Figure 2d). Notably, the maximum RB (1264.1) is found in the Chugach Mountains 

(140.55°W, 60.15°N) near the Gulf of Alaska. Precipitation generally falls as snow here and 

also receives orographic enhancement, which are possible fundamental factors explaining the 

ER and FR discrepancies. In addition, the availability of PMW data is more limited in high 

latitudes because of masked snowy and icy surfaces, which challenges the morphing schemes 

as well. 

The globally averaged MAD (and RMSD) is not negligible with values of 0.87 (1.82) 

mm h-1, compared with the average rainfall rate of 2.61 mm h-1. As these two metrics are 

highly correlated with the rainfall rate (Huffman, 1997), they are markedly scaled by large 
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rainfall rates. Alternatively, the corresponding normalized RMSD (RMSD_norm) becomes 

useful for further investigation. The global mean value of RMSD_norm is 0.93, which is 

broken down as 1.09 over land surfaces and 0.84 over oceans. It suggests higher differences 

between ER and FR over land due to the use of gauge adjustments. Similar to the 

performance of categorical indices, large RMSD_norm (> 2) values are exhibited in arid 

regions (e.g., cold oceans and deserts). 

3.2 Meridional Analysis 

Figure 3 depicts the latitudinal distribution (grouped by every 10° latitudinal band) of 

rainy samples and annual rainfall amounts. In general, ER and FR perform similarly across 

latitudes. ER detects less rainy samples than FR systematically across all latitudes. The RB of 

rainy samples is almost symmetric, which peaks in the poles (-0.12) and then gradually 

improves to -0.04 in the 30°-60°N-S band, followed by another peak in the tropics (-0.06). As 

speculated previously, the difference is possibly ascribed to the morphing differences because 

the forward-only morphing ER possibly misses rainfall events. Regarding mean annual 

rainfall, ER (1025 mm year-1) estimates 5.6% more annual rainfall than FR (982 mm year-1), 

which is similar to the globally averaged difference (5.3%). Moreover, large discrepancies 

are found in low latitudes within the 30°N-S band, in which ER estimates mean annual 

rainfall amounts of 1429.9 mm year-1, which is about 9% higher than FR (1326.7 mm year-1). 

Within 60°N-S, the RB for rainfall amount increases to a peak at 30°N and 30°S (~0.1) and 

then decreases in the tropics (~0.05). Finally, outside of 60°N-S, the RB peaks for both rainy 

occurrences and rainfall amounts, which can be explained by the different numerical weather 

models used to provide cloud motion vectors and also the divergence between SPPs 

(Behrangi et al., 2016; Tan et al., 2019b). 

12 



  

    

   

        

    

      

   

     

     

          

        

        

          

   

  

   

  

      

         

           

           

   

     

   

  

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

3.3 Earth Surface-based Analysis 

The performance of ER and FR with regard to three Earth surface types (i.e., land, 

ocean, and coast) are evaluated and intercompared at hourly time scale in Figure 4. In terms 

of systematic bias, the mode of RB for rainy samples is ranked in the order of inland (-

6.88%), coast (-6.42%), and ocean (-5.31%) in Figure 4a. On average, the land surface 

exhibits higher bias (16.7%) compared to oceanic (5.21%) and coastal (7.05%) regions. This 

ranking still holds for the RB of rainfall amounts with land (5.49%), coast (2.14%), and 

ocean (0.05%) in Figure 4b. Concerning instantaneous discrepancies, even though the mode 

of RMSD in Figure 4c is ranked slightly differently with land (2.38 mm h-1), ocean (2.18 mm 

h-1), and coast (2.06 mm h-1), the coast still yields the largest range (2.7 mm h-1) compared to 

land (2.06 mm h-1) and ocean (2.10 mm h-1). The above results are somewhat anticipated 

because oceans have more homogenous surfaces while land areas have more diverse features 

in terms of topography, surface roughness, and land cover heterogeneity (Kim et al., 2017; 

Sharifi et al., 2016). These features complicate precipitation patterns and their retrievals, 

which ultimately magnifies the differences (see section 3.4.1). 

The difference in coastal regions is described by the algorithmic transition between 

land and oceanic surfaces (Gruber et al., 2000; Tapiador et al., 2020). In addition, one can 

witness that the RMSD for both ocean and coast are bimodal with one mode inside the 30°N-

S band (RMSD=1.7 mm h-1 for ocean and 1.5 mm h-1 for coast) and the other mode outside 

the 60°N-S band (RMSD=0.8 mm h-1 for ocean and 0.5 mm h-1 for coast). Within the 30°N-S 

band, the peak of RMSD is associated with increased precipitation (e.g., warm oceans); 

outside 60°N-S, the difference is again attributed to the different numerical weather models 

utilized as previously mentioned and potentially more PMW estimates in FR towards high 

latitudes. 
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3.4 Land-based Analysis 

3.4.1 Elevation 

The systematic bias of satellite precipitation products over high elevations is attributed 

to sensor limitations, precipitation type, retrieval algorithms, and temporal sampling 

(Hashemi et al., 2013, 2020). All these issues propagate to IMERG estimates. FR and ER 

adopt different approaches to derive cloud motion vectors from total precipitable water vapor 

(MERRA-2 for FR and GEOS-FP for ER; Tan et al., 2019b), and such differences in 

methodology are highly impacted by orography. In addition to that, ER potentially infuses 

more IR-based precipitation estimates than FR, which is hypothesized to condition 

differences on different elevations. Figure 5 shows the RB of rainy samples and precipitation 

amounts as functions of elevation. The general trend of RB for rainy samples decreases from 

nearly 0 to -0.2 with increasing elevation from 0 to 5500 meters. Overall, the rainy samples 

detected by ER is 11.2% lower than FR on average, and the RB (-0.21) peaks at the elevation 

range from 4500 to 5000 meters. Notably, above 2000 meters, each bin shows negative biases 

with more than 75% of the samples, suggesting a significant uncertainty of rainfall detection 

in high elevations. 

For the annual precipitation amount, the mean RB is -0.06 overall, indicating that ER 

generally estimates less annual precipitation than FR. The RB gradually decreases from 0.2 to 

-0.3 going from 500 meters to 4500 meters, followed by a slight increase at the highest 

elevations (>4500 m). This behavior is similar to the study of Hashemi et al. (2020), in which 

a positive bias is found below 2000 meters, and then the bias transitions to a negative value 

above that. 

It is worth noting that the RB of precipitation amounts and rainy samples covary 

positively with elevation, suggesting that the systematic bias is possibly due to the missed 
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events caused by forward-only morphing in ER. Given the context of this study, we focus 

mainly on the intercomparison of similarity and difference exposed in merged products. As 

for the impact of IR estimates, one can analyse it by isolating IR-only precipitation from the 

merged products. Also other root causes are worth exploring for an independent research 

topic. 

3.4.2 Continents 

Since FR bears less uncertainty in places with rain gauges (i.e., the gauge density in the 

GPCC), it is worth exploring the differences between ER and FR with respect to available 

gauges. The RMSD field of the IMERG product is aggregated to 0.5° to match the GPCC 

resolution. Figure 6a shows the spatial distribution of the GPCC gauges. It is visually 

discernable that Europe has the densest gauge networks of all continents, with as many as 40 

gauges inside one grid box. On the other hand, Africa and South America exhibit more 

sparsely distributed gauge networks. Figure 6b illustrates the RMSD as a function of gauge 

numbers within each grid box. Compared to pixels with no gauges, pixels containing at least 

one gauge exhibit higher differences, highlighting the effect of the gauge-based correction 

that was applied. Also notably, increasing the number of gauges in each pixel reduces the 

interquartile range (IQR) of the RMSD. The exception to this result is the bin with more than 

20 gauges per pixel, but the sample size is much smaller. Therefore, higher gauge numbers in 

a pixel tend to reduce the uncertainty and stabilize the bias correction. 

Figure 7 exhibits the RMSD grouped by continents. Figure 7a shows the spatial 

distributions of RMSD, and Figure 7b reveals the gauge density in each continent obtained 

from GPCC (standardized by the maximum). The standardized gauge density in each 

continent is ranked in the following order: Europe, Asia, North America, Australia, Africa, 

and South America. For the RMSD, the instantaneous differences between ER and FR are 

ranked as follows: Africa (2.82 mm h-1), Australia (2.76 mm h-1), South America (2.42 mm h-
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1), Asia (2.42 mm h-1), North America (2.40 mm h-1), and Europe (2.16 mm h-1). Moreover, 

the IQR for RMSD shows that North America has the smallest uncertainties while Australia 

has the largest ones. The IQRs in other continents are relatively similar. Combining the 

RMSD and gauge density as in a Taylor plot (Figure 7b), Europe stands out to be the top 

continent to be able to take advantage of ER products for research and operations. Beyond 

that, the Americas and Asia could also be suitable continents for applying such ER products. 

Unfortunately, the continent of Africa that needs satellite data the most for flood alerting and 

water resource management suffers the most from large discrepancies and low gauge 

densities. Even though it does not imply ER is not suitable in these regions, further attentions 

should be drawn when using ER for applications. 

3.4.3 Climates 

Figure 8 depicts the normalized instantaneous hourly difference (RMSD_norm) for 

different climates according to the Köppen-Geiger classifications. Figure 8a shows the 

distribution of RMSD_norm, and Figure 8b complements it with standardized gauge 

densities. The mean RMSD_norms are ranked according to the following climates: arid 

(1.86), warm climate (1.21), equatorial (1.16) and snow (1.16), and polar (0.91). As a result, 

arid regions like North Africa and the Middle East have the largest instantaneous differences. 

When considering temperatures, the RMSD_norms are then ranked in the following order: 

hot arid (1.90), cold arid (1.79), extremely continental (1.67), hot summer (1.11), cold 

summer (1.07), and polar (0.87). Therefore, in general, arid regions with higher temperatures 

(i.e., hot arid regions) exhibit the highest instantaneous differences. This is likely due to the 

effect of sub-cloud evaporation causing large discrepancies between the remote-sensing 

estimates and in-situ observations, which lowers FR estimates from the initial ER values. 

Additionally, the forward-only morphing in ER may miss the short-duration rainfall events 

common in arid environments. Since most of the gauge networks are located in warm 
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temperate regions, hot arid and cold snow regions remain the most problematic regimes for 

the GPM era. 

3.5 Precipitation Extremes 

Extreme precipitation is defined here as rainfall rates in the 99th percentile during the 

twenty-year time period at each grid cell (Liu and Zipser, 2015). Notably, IMERG 

precipitation rates are capped to a maximum of 120 mm h-1 in the current 06B version, which 

is likely to impact this extreme event analysis (Skofronick-Jackson et al., 2017). Due to the 

aforementioned fact that FR is heavily dependent on the gauge densities, the extreme 

precipitation rates captured by FR may not be homogenous. Figure 9a depicts the extreme 

rainfall rate analysis for ER and FR with the corresponding conditional differences. ER 

estimates a globally averaged extreme rainfall rate of 12.1 mm h-1, which is 33.0% higher 

than FR (9.1 mm h-1). While in contrast to previous results that the location with maximum 

annual rainfall occurs at the same place for ER and FR, the maximum extreme rainfall rates 

are more distant. The maximum for ER (60.0 mm h-1) occurs in the Arabian Sea (57.4°E, 

10.5°N) while FR (52.1 mm h-1) is near Mount Hubbard (138.3°W, 59.9°N). In fact, the 

location of the maximum extreme rainfall rate estimated by FR is adjacent to the location 

with the maximum RB of annual rainfall in the Gulf of Alaska. 

Instead of overestimation (RB>0) of ER in terms of annual rainfall average worldwide, 

the conditional RB (RB_cond) in extreme events is trivial (-0.08), though with 80% of the 

grid cells showing negative RB_cond. This indicates the comparable performance of ER and 

FR in capturing the extreme rainfall rates. The maximum RB_cond (30.3) is obtained in 

Egypt (30.5°N, 26.0°E), surrounded by deserts. This finding aligns well with previous results 

(i.e., climate zone analysis) of large differences in arid regimes. Moreover, the conditioned 

RMSD (RMSD_cond) over the globe is 4.87 mm h-1, while the maximum (24.7 mm h-1) 
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386 observed at (84.7°E, 27.8°N) is in a mountainous region. This is again likely caused by the 

387 misrepresentation of orographic precipitation as discussed in Section 3.4.1. 

4 Conclusions 

This study presents a 20-yr intercomparison of GPM IMERG early run (ER), and final 

run (FR) precipitation products. These products are compared globally and regionally with a 

focus on the following three aspects: (1) precipitation climatology for water resource 

management, (2) instantaneous rainfall rate differences for general hydrometeorology, and 

(3) hydrological extremes for flood hazards. 

Regarding precipitation climatology, the similarities and differences of rain detection 

and mean annual rainfall amount are evaluated. First, ER detects less rainy samples than FR 

over 79.6% of the grid cells, leading to an overall 8.4% under-detection in relation to FR. 

However, ER has higher mean annual rainfall amounts in 71.9% of the grid cells, yielding an 

average 12.0% higher amount. Over land, the relative bias (16.7%) is slightly exacerbated 

due to the diverse terrain that impacts precipitation dynamics and the emitted brightness 

temperatures. 

The instantaneous rainfall rate differences between ER and FR are higher over land with 

RMSD and RMSD_norm (2.38 mm h-1and 1.09) than ocean surfaces (2.18 mm h-1and 0.84). 

This is again likely due to the heterogeneity of the land cover and terrain. When examining 

differences over continents, ER exhibits the most similarities with FR in Europe with the 

lowest RMSD (2.16 mm h-1) where the rain gauge densities are highest. Meanwhile, over 

Africa, a continent in need of satellite data for its flood alert and water resources management 

systems suffers from the largest RMSD (2.82 mm h-1). Regarding climate zones, hot arid 

regions (RMSD_norm=1.86) and cold snow regions (RMSD_norm=1.16) remain the most 

problematic places for the GPM-era algorithms. We also found in this study that grid boxes 
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containing gauges have higher differences than those grid cells containing no gauges, 

highlighting the effect of the gauge-based correction that was applied. 

For extreme precipitation (i.e., the top 1%), the globally averaged rainfall rate for ER 

(12.1 mm h-1) is 33.0% higher than with FR (9.1 mm h-1). In contrast to mean rainfall 

estimates, the RB conditioned on extreme events shows that ER slightly measures less 

intense rainfall over the globe. 

The similarities and differences revealed in this study can provide a broad overview of 

the circumstances for using ER. First, in long-range simulations (i.e., decadal/annual scale), 

ER is biased, and some statistical bias correction methods should be applied prior to use. 

Second, for mid-range simulations (i.e., monthly/weekly scale), ER can be conditionally 

applied in regions that have acceptable instantaneous differences (e.g., Europe/cold regions). 

Lastly, for short-range simulations (daily/hourly scale), ER is appropriate for 

hydrometeorological applications such as the early warning or alerting of precipitation-

induced hazards. Future events-based studies aided by hydrologic modeling are necessary to 

examine the flood prediction capabilities of ER versus FR. 
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